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ABSTRACT
 
The amount of memory required for code-block is one of the most 
important issues in JPEG2000 encoder chip implementation. This 
work tries to unify the output scanning order of the 2D-DWT and 
the processing order of the EBCOT and further to eliminate the 
code-block memory completely eliminated. We also propose a 
new architecture for embedded block coding (EBC), code-block 
switch adaptive embedded block coding (CS-AEBC), which can 
skip the insignificant bit-planes to reduce the computation time 
and save power consumption. Besides, a new dynamic rate 
distortion optimization (RDO) approach is proposed to reduce the 
computation time when the EBC processes lossy compression 
operation. The total memory required for the proposed JPEG2000 
is only 2KB of internal memory, and the bandwidth required for 
the external memory is 2.1 B/cycle. 
 

Index Terms—JPEG2000, 2D-DWT, EBCOT, RDO 

1. INTRODUCTION 
 
JPEG has good compression performance for natural images, and 
it was widely used in the image compression systems in the past 
decade. However, in the low bit rate image compression JPEG 
may produce very severe blocking effect and usually annoys 
people. JPEG2000 is the newest image compression standard 
proposed by ISO/IEC JTC1/SC29/WG1 [1]. It outperforms JPEG 
in many features. For low bit rate image compression it can have 
better quality than that of JPEG. Besides, JPEG2000 provides 
many features such as progressive quality and resolution image 
transmission, region of interest (ROI), loseless and lossy 
compression, good error resilience, …, etc. JPEG2000 can provide 
such high compression quality and good features, however the 
complexity of the algorithm is much higher than JPEG. 

Figure 1 shows the processing block diagram of JPEG2000. 
After the color transform the image is processed by the 2D-DWT 
(2D-discrete wavelet transform) and uniform quantization, 
respectively, and finally the data are fed to the EBCOT (embedded 
block coding with optimized truncation) [2] to generate the bit 
stream. Due to the different scanning order of the function blocks, 
JPEG2000 needs tile memory blocks in between function blocks of 
color transform and 2D-DWT, and code-block memory in between 
function blocks of uniform quantization and EBCOT.  

JPEG2000 adopts lifting based DWT algorithm. In 2D-DWT 
an image is processed by the 1D-DWT horizontally and vertically 
respectively to generate four sub-bands, HH, HL, LH, and LL. In 
order to save the internal memory for DWT operation, the high 
frequency signal and low frequency signal of the DWT are 
produced alternatively [11]. Therefore, in order to reduce the code-

block memory of the 2D-DWT and EBCOT, the EBCOT must 
have the ability to concurrently process the data of the four sub-
bands of the 2D-DWT. For the feature of resolution scalability, 
JPEG2000 must have the LL sub-band to be processed more times 
of 2D-DWT operation (multi-level DWT). 

 Figure 1.  JPEG2000 system block diagram 

Figure 2.  Data hierarchy of JPEG2000 

EBCOT consists of two steps, embedded block coding (EBC) 
and rate-distortion optimization (RDO). EBC tries to encode the 
quantized DWT data by context-based arithmetic coding approach; 
on the other hand RDO tries to decide the truncation point of the 
bit stream encoded by the EBC according to the bit-rate. The data 
hierarchy of JPEG2000 is shown in Fig. 2. After quantization, the 
sub-band of the 2D-DWT is divided into several code-blocks that 
can be processed by the EBC. Each code-block is then 
decomposed into several bit-planes (BP). The EBC skips those 
insignificant bit-planes and then encodes the code-block from the 
most significant bit-plane. According to different significances, 
each pixel on the bit-plane is encoded by one of the three passes 
sequentially. Because the bit-plane number of the insignificant bit-
plane depends on the data content of the code-block, the data rate 
is not constant and we need internal memory for data buffering. 

Because the 2D-DWT is in word-level operation but the EBC 
is in bit-level operation, the scanning orders of both function 
blocks are different, and thus we need a code-block memory for 
buffering when implementing JPEG2000. If we want to eliminate 
the code-block memory, the block sizes processed by DWT and 
EBC must be the same. In order to increase the efficiency of EBC, 
most researches of EBC [3-7] focus on the parallel architecture to 
increase the operation speed. Because the data size is variant 
according to the bit-plane numbers of each code-block, most of the 
previous proposed EBCs tried to skip the insignificant bit-planes 
by using code-block memory or used more parallel circuits than 
required to deal with the insignificant bit-planes and significant 
bit-planes. Since the code-block memory may take a large portion 
of the JPEG2000 core, it makes the JPEG2000 core to be large and 
reduce the feasibility of the JPEG2000 applications. 
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2. WORD-LEVEL EMBEDDED BLOCK CODING 
ALGORITHM

 
In JPEG2000 standard, the conventional JPEG2000 architecture 
needs a large buffering memory block to store the code-block in 
between the DWT and EBC. The EBC algorithm consists of two 
steps: context modeling and arithmetic coding. The coefficients of 
the DWT pass through the code block memory to be decomposed 
into bit-planes, and then the bit-plane data are fed to the context 
modeling function block to generate context and decision (CX-D) 
pair. The arithmetic encoder (AE) further uses the CX-D pair to 
generate the compressed bit stream. Since the data processing 
format of the DWT (in word-level) and that of the EBC (in bit-
level) are different, it may reduce the operation efficiency of 
JPEG2000. Fang et al. [4] proposed a word-level parallel EBC 
(WEBC) to overcome the drawbacks of the conventional bit-level 
EBC. 

The WEBC adopts the pass switch arithmetic encoder (PSAE) 
[3] to concurrently process all the bit-planes. It can increase the 
EBC operation speed as well as reduce the amount of the code-
block memory. Figure 3 indicates the block diagram of the parallel 

architecture of the WEBC. The register bank (RB) stores the DWT 
coefficients and also calculates all the state variables needed when 
operating the context modeling. The folding arithmetic encoder 
(FAE) can use less PSAE processors by the hardware sharing 
approach to process the generated pass-CxD-pair (PCxD). The 
concepts of the register bank, context modeling, and folding 
arithmetic are briefly described in the following paragraphs. 

The register bank uses the DWT coefficients to calculate the 
context modeling required state variables: magnitude ( p), sign ( ), 
significant state ( ), and refinement state ( ). The definitions of 
these four state variables are listed in Table 1, where K represents 
the number of the significant bit-plane; k represents the number of 
the current bit-plane, and k = 0 is the LSB.According to the 
significance of each sample, EBC classifies it into three categories 
(passes), and the context modeling encodes the sample in three 
different coding passes upon its significance category. The pass 
category can be decided by (1). In (1) Pc

k is the pass of sample c; s 
is the 8 surrounding neighbors of sample c, and p

c is the 
significant state of c in coding pass P. We can use state variables  

Table 1: State variables used in the context modeling 

 
Figure 3. The WEBC block diagram 

Category Name Description Formula
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Figure 4. The proposed JPEG2000 encoder architecture
 
found in Table 1 together with (1) and (2) and apply the run-length 
coding (RLC), zero coding (ZC), sign coding (SC), and magnitude 
refinement coding (MRC) to accomplish the context modeling 
computation. The coding flow can be referred to [1]. 

The other step of EBC is the context-based arithmetic coding. 
Same as other parallel encoding approaches [3, 6, 7], the WEBC 
must operate arithmetic coding once for each of the three coding 
passes. The context-based arithmetic coding has to accumulate the 
probability for each Qe of the context. Qe uses the 6-bit state 
variable, I, to express the possibility of the 46 types of Qe. Besides, 
each context must record its own most possible symbol (MPS), and 
therefore the arithmetic encoder for each bit-plane needs 399 bits 
memory. 

The WEBC can concurrently process all the bit-planes to 
increase the EBC operating speed and reduce the code-block 
memory. For full parallel processing, it uses 10 parallel circuits to 
process all the bit-planes of the code block a time regardless of the 
insignificant bit-planes. The WEBC processes the insignificant bit-
planes instead of skipping them. In JPEG2000, the 2D-DWT 
coefficient for each sample is 10 bits (excluding the sign bit) in 
size, but most of the data are less than 10 bits in size. This all 10 
bits scheme may reduce the computation and power efficiency. 

 (1) 

 
 (2) 3. THE PROPOSED JPEG2000 ARCHITECTURE 

In this work we propose a word-level JPEG2000 encoder 
architecture to overcome the drawbacks of the conventional 
approaches. The proposed EBC architecture, code-block switch 
adaptive EBC (CS-AEBC) can completely eliminate the code-
block memory like WEBC, but it can adaptively skip the 
insignificant bit-planes to increase the operating and power 
efficiencies. For making the CS-AEBC to operate properly, we 
also propose a new 2D-DWT, code-block based 2D-DWT. This 
2D-DWT can calculate the DWT coefficients of the code-blocks 
without generating boundary effects. We also redesign the RDO 
for the CS-AEBC to skip the truncated data to reduce the power 
consumption. The block diagram of the proposed JPEG2000 
encoder is shown in Fig. 4. It consists of code-block switch 
adaptive EBC, code-block based DWT, and dynamic RDO. 

In order to reduce the code-block memory, we use the CS-
AEBC to process the 4 alternative sub-band DWT coefficients. 
The CS-AEBC operates the 4 sub-band coefficients concurrently 
and it needs 1.9KB internal memory. The output scanning order of 
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the proposed code-block based 2D-DWT is the same as that of the 
CS-AEBC, and therefore the code-block memory can be 
completely eliminated. In order not to use too many internal 
registers, here we do not use the LS-DWT proposed in [5], but let 
the DWT operate one level a time and move all the sub-band 
coefficients to the external memory. By this arrangement, the sub-
band external memory can allow the JPEG2000 system to operate 
any level of DWT. In order to prevent the boundary effect, the 
code-block based DWT needs 2304b internal memory and 
2.11B/cycle external memory bandwidth. The dynamic RDO tries 
to predict the truncation point to make the CS-AEBC to skip the 
truncated data. By this approach, CS-AEBC can reduce the 
compressed data memory bandwidth to reduce power consumption. 
The details of CS-AEBC, code-block based 2D-DWT, and 
dynamic RDO are described in the following subsections. 

 
3.1. Code-Block Switch Adaptive EBC (CS-AEBC) 

The WEBC can effectively reduce the requirement of code-block 
memory [17]. However, without code-block memory, the EBC 
cannot extract the significant bit-planes such that it must process 
all the bit-planes, and it may reduce the operating efficiency. The 
proposed CS-AEBC can solve the problems caused by the word-
level operating EBC. Figure 5 shows the block diagram of the 
proposed CS-AEBC. In the CS-AEBC, group of zero skipping 
(GoZS) and zero skipping (ZS) circuits try to merge the data of the 
four DWT sub-band coefficients and skip the insignificant bits. 
The parallel context formation (PCF) circuit concurrently access 
two samples from each of the 3 bit-planes at every clock cycle. 
The folding arithmetic encoder encodes 6 code-block pass CX-D 
pairs, and use the single context AE to calculate the number of the 
code words that are skipped by GoZS and ZS. 

The diagram of the CS-AEBC algorithm is described in Fig. 6. 
There are three steps in the algorithm: 
Step 1. Coefficients merging: It merges the 4 read code-blocks to a 

single one, and then treats those context windows (CW) with 0 
content to be insignificant context windows (ICW). 

Step 2. Group of zero skipping (GoZS): It packs those context 
windows that can be accessed simultaneously by the context 
formation circuit as a package (Fig. 6 shows an example of 3 
bit-planes).If all the context windows in the package are 
insignificant, this package can be dropped out (skipped). 

Step 3. Zero skipping (ZS): The packages are then sequentially 
stored into the queue of the zero skipping circuit. When the 

data are serial out, the insignificant context window is replaced 
by the significant context window of the next package. If the 
queue is spaced for a whole package by the ZS operation, we 
must fill up one more package to the queue from GoZS. 

(a)                                                     (b) 
Figure 7.  (a)Simplification of the stripe line buffer 

(b) Register bank of the folding arithmetic encoder 
Figure 5.  The CS-AEBC block diagram 

 
Figure 6.  The diagram of the GoZS and ZS algorithm 

(a)                                                  (b) 
Figure 8. (a) Scanning order of the stripe 2D-DWT 

(b) Code-block based DWT block diagram 

After the processing of GoZS and ZS, the parallel context 
formation circuit can only deal with the significant context 
windows. From Fig. 5, the parallel context formation only needs 3 
two-sample parallel context formation (TSCF) circuits. 

GoZS must have the ability to contain the context windows of 
all the bit-planes, and each bit-plane needs a 24-byte stripe line 
buffer to record , 1, and 3. Because the significant state has the 
follow-up property as shown in Fig. 7(a), 1 and 3 of the whole 
word can be replaced by recording the difference of the location of 
the MSB of 1 and 3. Therefore the 4 code blocks need 6 64 4 
bits = 192-byte memory. Because GoZS and ZS exclude all the 
insignificant context windows, each bit-plane will be processed by 
the PSAE of the folding arithmetic encoder. The registers of the 
folding arithmetic encoder are accumulated to the register bank as 
shown in Fig. 7(b). The 3 PSAEs will read their own variables 
from the register bank. In the encoding process the number of the 
significant bit-plane is changed all the time. The variables of the 
PSAE for the last two bit-planes of each code-block are stored 
separately to allow all the PSAEs to access their own variables 
from the register bank independently. 
  
3.2. Code-Block Based DWT Encoder 

To completely eliminate the code-block memory, the DWT used in 
this work, code-block based DWT encoder, operates in code-block 
scheme, and the data in between code-blocks is connected by a 
line buffer. The output of the scan pattern of the code-block based 
DWT is the same as that of the CS-AEBC and the scanning order 
diagram is shown in Fig. 8(a). It needs 8 pixels sequentially from 
each column. This scan-order makes the output scanning order of 
the code-block based DWT to be the same as that of the CS-AEBC 
and this mechanism can eliminate the code-block memory in 
between the DWT and CS-AEBC. We allocate the first row of 
each tile of the external memory as the horizontal line buffer to 
align the reading sequence of the DWT and thus reduce the DWT 
latency. The block diagram of the whole stripe 2D-DWT is shown 
in Fig. 8(b). The horizontal DWT circuits are similar to the vertical 
DWT circuits. However, the horizontal DWT must concurrently 
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process 4 rows of high band and low band DWT coefficients, and 
therefore the horizontal DWT needs 8 sets of registers. 
3.3. Dynamic RDO 
The architecture of the EBCOT with conventional RDO is shown 
in Fig. 9(a). Although the code-block based DWT and CS-AEBC 
are in word-level operation and thus do not need any code block 
memory, the bit-rate and distortion information needed by RDO 
must be finished after the operation of all the bit-planes. Therefore, 
it needs a memory block to store all the compressed data before 
RDO. When JPEG2000 processes lossy compression, some data 
are truncated by RDO. The truncated data are still processed by 
EBC and it reduces efficiencies of computation and power 
consumption. In order to overcome the drawbacks, the truncation 
computation of RDO can be revised as eq. (3), where K represents 
the number of the significant bit-plane; k represents the number of 
the current bit-plane and p stands for the protection ratio: 

ˆ 2ˆ
ˆ

K k
coded uncoded coded

codedcoded uncoded

D D D D
R R RR R p

     (3) 

is From eq. (3), we can estimate the approximate truncation 
point before the CS-AEBC finishing the code-block encoding. 
After the truncation point is found, the CS-AEBC can stop 
operating to start the operation of RDO and it can prevent the CS-
AEBC to process the invalid data. Therefore the EBCOT 
architecture can be revised and is shown in Fig. 9(b). In Fig. 9(b), 
the compressed data memory block is removed, and it can reduce 
the hardware cost significantly. 
 

4. EXPERIMENTAL RESULTS AND COMPARISONS 
 
The prototype chip is synthesized by SYNOPSYS with Artison 
TSMC 0.18 m standard cell library. Table 2 shows the gate counts, 
internal memory, and the bandwidth for the external memory of 
each function block of the proposed JPEG2000 encoder 
architecture.  

Table 3 shows the comparisons of the proposed architecture 
and other competitive architectures. This proposed JPEG2000 
encoder needs 2.2KB of internal memory, and the external 
memory bandwidth is 16.92 bits (2.1B) per clock cycle. Besides, 
the proposed architecture can handle any tile size of picture and 
any levels of DWT. Compared with other existed approaches, our 
JPEG2000 encoder is very competitive in area, memory 
arrangement, and performance. 

 
5. CONCLUSION 

 
In this paper a low cost JPEG2000 encoder architecture is 
proposed. We use three new approaches to design this JPEG2000 
encoder, code-block based DWT, CS-AEBC, and dynamic RDO. 
The output sequence order of the code-block based DWT and the 
scanning order of the CS-AEBC are perfectly matched to 
completely eliminate the code-block memory. The code-block 
based DWT can process any size of tile and any levels of DWT. 
The CS-AEBC can skip all the insignificant bit-planes without 
code-block memory to increase the operation efficiency. When 

processing the lossy compression, the dynamic RDO can predict 
the truncated point and reduce the operation time of the CS-AEBC 
and further reduce the external memory access times of CS-AEBC. 
The proposed JPEG2000 encoder only needs 2KB internal 
memory for buffering, and the external memory bandwidth is 
2.1B/cycle. 

TABLE 2. Proposed Encoder Specification   
Area Mem. Bandwidth  Freq. 

(nand2) (KB) (B/cyc) (MHz) 
CB-DWT 13223 0.28 2.11 74 

CF 18480 0.19 -- 56 
 Figure 9. (a) EBCOT with bit-level RDO  (b) EBCOT 

with word-level RDO 
FAE 38065 1.75 -- 112 

DRDO 20306 0 -- 56 
Total 90074 2.22 2.11 -- 

TABLE 3. Comparison with other architectures 
Area Rate Tile Mem. DWT

(Nand2) (MS/s) (Pixel) (KB) Level
2562 [5] 243792 124M 15 3 
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