
LOW COST ARCHITECTURE FOR JPEG2000 ENCODER WITHOUT CODE-
BLOCK MEMORY

Tsung-Ta Lin and Jen-Shiun Chiang

Department of Electrical Engineering

Tamkang University
Tamsui, Taipei, Taiwan

Email: zdlin@ee.tku.edu.tw; chiang@ee.tku.edu.tw;

ABSTRACT

The amount of memory required for code-block is one of the most
important issues in JPEG2000 encoder chip implementation. This
work tries to unify the output scanning order of the 2D-DWT and
the processing order of the EBCOT and further to eliminate the
code-block memory completely eliminated. We also propose a
new architecture for embedded block coding (EBC), code-block
switch adaptive embedded block coding (CS-AEBC), which can
skip the insignificant bit-planes to reduce the computation time
and save power consumption. Besides, a new dynamic rate
distortion optimization (RDO) approach is proposed to reduce the
computation time when the EBC processes lossy compression
operation. The total memory required for the proposed JPEG2000
is only 2KB of internal memory, and the bandwidth required for
the external memory is 2.1 B/cycle.

Index Terms—JPEG2000, 2D-DWT, EBCOT, RDO

1. INTRODUCTION

JPEG has good compression performance for natural images, and
it was widely used in the image compression systems in the past
decade. However, in the low bit rate image compression JPEG
may produce very severe blocking effect and usually annoys
people. JPEG2000 is the newest image compression standard
proposed by ISO/IEC JTC1/SC29/WG1 [1]. It outperforms JPEG
in many features. For low bit rate image compression it can have
better quality than that of JPEG. Besides, JPEG2000 provides
many features such as progressive quality and resolution image
transmission, region of interest (ROI), loseless and lossy
compression, good error resilience, …, etc. JPEG2000 can provide
such high compression quality and good features, however the
complexity of the algorithm is much higher than JPEG.

Figure 1 shows the processing block diagram of JPEG2000.
After the color transform the image is processed by the 2D-DWT
(2D-discrete wavelet transform) and uniform quantization,
respectively, and finally the data are fed to the EBCOT (embedded
block coding with optimized truncation) [2] to generate the bit
stream. Due to the different scanning order of the function blocks,
JPEG2000 needs tile memory blocks in between function blocks of
color transform and 2D-DWT, and code-block memory in between
function blocks of uniform quantization and EBCOT.

JPEG2000 adopts lifting based DWT algorithm. In 2D-DWT
an image is processed by the 1D-DWT horizontally and vertically
respectively to generate four sub-bands, HH, HL, LH, and LL. In
order to save the internal memory for DWT operation, the high
frequency signal and low frequency signal of the DWT are
produced alternatively [11]. Therefore, in order to reduce the code-

block memory of the 2D-DWT and EBCOT, the EBCOT must
have the ability to concurrently process the data of the four sub-
bands of the 2D-DWT. For the feature of resolution scalability,
JPEG2000 must have the LL sub-band to be processed more times
of 2D-DWT operation (multi-level DWT).

 Figure 1. JPEG2000 system block diagram

Figure 2. Data hierarchy of JPEG2000

EBCOT consists of two steps, embedded block coding (EBC)
and rate-distortion optimization (RDO). EBC tries to encode the
quantized DWT data by context-based arithmetic coding approach;
on the other hand RDO tries to decide the truncation point of the
bit stream encoded by the EBC according to the bit-rate. The data
hierarchy of JPEG2000 is shown in Fig. 2. After quantization, the
sub-band of the 2D-DWT is divided into several code-blocks that
can be processed by the EBC. Each code-block is then
decomposed into several bit-planes (BP). The EBC skips those
insignificant bit-planes and then encodes the code-block from the
most significant bit-plane. According to different significances,
each pixel on the bit-plane is encoded by one of the three passes
sequentially. Because the bit-plane number of the insignificant bit-
plane depends on the data content of the code-block, the data rate
is not constant and we need internal memory for data buffering.

Because the 2D-DWT is in word-level operation but the EBC
is in bit-level operation, the scanning orders of both function
blocks are different, and thus we need a code-block memory for
buffering when implementing JPEG2000. If we want to eliminate
the code-block memory, the block sizes processed by DWT and
EBC must be the same. In order to increase the efficiency of EBC,
most researches of EBC [3-7] focus on the parallel architecture to
increase the operation speed. Because the data size is variant
according to the bit-plane numbers of each code-block, most of the
previous proposed EBCs tried to skip the insignificant bit-planes
by using code-block memory or used more parallel circuits than
required to deal with the insignificant bit-planes and significant
bit-planes. Since the code-block memory may take a large portion
of the JPEG2000 core, it makes the JPEG2000 core to be large and
reduce the feasibility of the JPEG2000 applications.

137978-1-4244-2571-6/08/$25.00 ©2008 IEEE ICME 2008

2. WORD-LEVEL EMBEDDED BLOCK CODING
ALGORITHM

In JPEG2000 standard, the conventional JPEG2000 architecture
needs a large buffering memory block to store the code-block in
between the DWT and EBC. The EBC algorithm consists of two
steps: context modeling and arithmetic coding. The coefficients of
the DWT pass through the code block memory to be decomposed
into bit-planes, and then the bit-plane data are fed to the context
modeling function block to generate context and decision (CX-D)
pair. The arithmetic encoder (AE) further uses the CX-D pair to
generate the compressed bit stream. Since the data processing
format of the DWT (in word-level) and that of the EBC (in bit-
level) are different, it may reduce the operation efficiency of
JPEG2000. Fang et al. [4] proposed a word-level parallel EBC
(WEBC) to overcome the drawbacks of the conventional bit-level
EBC.

The WEBC adopts the pass switch arithmetic encoder (PSAE)
[3] to concurrently process all the bit-planes. It can increase the
EBC operation speed as well as reduce the amount of the code-
block memory. Figure 3 indicates the block diagram of the parallel

architecture of the WEBC. The register bank (RB) stores the DWT
coefficients and also calculates all the state variables needed when
operating the context modeling. The folding arithmetic encoder
(FAE) can use less PSAE processors by the hardware sharing
approach to process the generated pass-CxD-pair (PCxD). The
concepts of the register bank, context modeling, and folding
arithmetic are briefly described in the following paragraphs.

The register bank uses the DWT coefficients to calculate the
context modeling required state variables: magnitude (p), sign (),
significant state (), and refinement state (). The definitions of
these four state variables are listed in Table 1, where K represents
the number of the significant bit-plane; k represents the number of
the current bit-plane, and k = 0 is the LSB.According to the
significance of each sample, EBC classifies it into three categories
(passes), and the context modeling encodes the sample in three
different coding passes upon its significance category. The pass
category can be decided by (1). In (1) Pc

k is the pass of sample c; s
is the 8 surrounding neighbors of sample c, and p

c is the
significant state of c in coding pass P. We can use state variables

Table 1: State variables used in the context modeling

Figure 3. The WEBC block diagram

Category Name Description Formula
p [k] Magnitude &(Coef &2k) Bit-plane

Data [k] Sign Coef / |Coef|
 [k] Significant

State
1

1
Vp 0

K

k
 Coding

State
Variable 1k [k] Refinement

State

Figure 4. The proposed JPEG2000 encoder architecture

found in Table 1 together with (1) and (2) and apply the run-length
coding (RLC), zero coding (ZC), sign coding (SC), and magnitude
refinement coding (MRC) to accomplish the context modeling
computation. The coding flow can be referred to [1].

The other step of EBC is the context-based arithmetic coding.
Same as other parallel encoding approaches [3, 6, 7], the WEBC
must operate arithmetic coding once for each of the three coding
passes. The context-based arithmetic coding has to accumulate the
probability for each Qe of the context. Qe uses the 6-bit state
variable, I, to express the possibility of the 46 types of Qe. Besides,
each context must record its own most possible symbol (MPS), and
therefore the arithmetic encoder for each bit-plane needs 399 bits
memory.

The WEBC can concurrently process all the bit-planes to
increase the EBC operating speed and reduce the code-block
memory. For full parallel processing, it uses 10 parallel circuits to
process all the bit-planes of the code block a time regardless of the
insignificant bit-planes. The WEBC processes the insignificant bit-
planes instead of skipping them. In JPEG2000, the 2D-DWT
coefficient for each sample is 10 bits (excluding the sign bit) in
size, but most of the data are less than 10 bits in size. This all 10
bits scheme may reduce the computation and power efficiency.

 (1)

 (2) 3. THE PROPOSED JPEG2000 ARCHITECTURE

In this work we propose a word-level JPEG2000 encoder
architecture to overcome the drawbacks of the conventional
approaches. The proposed EBC architecture, code-block switch
adaptive EBC (CS-AEBC) can completely eliminate the code-
block memory like WEBC, but it can adaptively skip the
insignificant bit-planes to increase the operating and power
efficiencies. For making the CS-AEBC to operate properly, we
also propose a new 2D-DWT, code-block based 2D-DWT. This
2D-DWT can calculate the DWT coefficients of the code-blocks
without generating boundary effects. We also redesign the RDO
for the CS-AEBC to skip the truncated data to reduce the power
consumption. The block diagram of the proposed JPEG2000
encoder is shown in Fig. 4. It consists of code-block switch
adaptive EBC, code-block based DWT, and dynamic RDO.

In order to reduce the code-block memory, we use the CS-
AEBC to process the 4 alternative sub-band DWT coefficients.
The CS-AEBC operates the 4 sub-band coefficients concurrently
and it needs 1.9KB internal memory. The output scanning order of

138

the proposed code-block based 2D-DWT is the same as that of the
CS-AEBC, and therefore the code-block memory can be
completely eliminated. In order not to use too many internal
registers, here we do not use the LS-DWT proposed in [5], but let
the DWT operate one level a time and move all the sub-band
coefficients to the external memory. By this arrangement, the sub-
band external memory can allow the JPEG2000 system to operate
any level of DWT. In order to prevent the boundary effect, the
code-block based DWT needs 2304b internal memory and
2.11B/cycle external memory bandwidth. The dynamic RDO tries
to predict the truncation point to make the CS-AEBC to skip the
truncated data. By this approach, CS-AEBC can reduce the
compressed data memory bandwidth to reduce power consumption.
The details of CS-AEBC, code-block based 2D-DWT, and
dynamic RDO are described in the following subsections.

3.1. Code-Block Switch Adaptive EBC (CS-AEBC)

The WEBC can effectively reduce the requirement of code-block
memory [17]. However, without code-block memory, the EBC
cannot extract the significant bit-planes such that it must process
all the bit-planes, and it may reduce the operating efficiency. The
proposed CS-AEBC can solve the problems caused by the word-
level operating EBC. Figure 5 shows the block diagram of the
proposed CS-AEBC. In the CS-AEBC, group of zero skipping
(GoZS) and zero skipping (ZS) circuits try to merge the data of the
four DWT sub-band coefficients and skip the insignificant bits.
The parallel context formation (PCF) circuit concurrently access
two samples from each of the 3 bit-planes at every clock cycle.
The folding arithmetic encoder encodes 6 code-block pass CX-D
pairs, and use the single context AE to calculate the number of the
code words that are skipped by GoZS and ZS.

The diagram of the CS-AEBC algorithm is described in Fig. 6.
There are three steps in the algorithm:
Step 1. Coefficients merging: It merges the 4 read code-blocks to a

single one, and then treats those context windows (CW) with 0
content to be insignificant context windows (ICW).

Step 2. Group of zero skipping (GoZS): It packs those context
windows that can be accessed simultaneously by the context
formation circuit as a package (Fig. 6 shows an example of 3
bit-planes).If all the context windows in the package are
insignificant, this package can be dropped out (skipped).

Step 3. Zero skipping (ZS): The packages are then sequentially
stored into the queue of the zero skipping circuit. When the

data are serial out, the insignificant context window is replaced
by the significant context window of the next package. If the
queue is spaced for a whole package by the ZS operation, we
must fill up one more package to the queue from GoZS.

(a) (b)
Figure 7. (a)Simplification of the stripe line buffer

(b) Register bank of the folding arithmetic encoder
Figure 5. The CS-AEBC block diagram

Figure 6. The diagram of the GoZS and ZS algorithm

(a) (b)
Figure 8. (a) Scanning order of the stripe 2D-DWT

(b) Code-block based DWT block diagram

After the processing of GoZS and ZS, the parallel context
formation circuit can only deal with the significant context
windows. From Fig. 5, the parallel context formation only needs 3
two-sample parallel context formation (TSCF) circuits.

GoZS must have the ability to contain the context windows of
all the bit-planes, and each bit-plane needs a 24-byte stripe line
buffer to record , 1, and 3. Because the significant state has the
follow-up property as shown in Fig. 7(a), 1 and 3 of the whole
word can be replaced by recording the difference of the location of
the MSB of 1 and 3. Therefore the 4 code blocks need 6 64 4
bits = 192-byte memory. Because GoZS and ZS exclude all the
insignificant context windows, each bit-plane will be processed by
the PSAE of the folding arithmetic encoder. The registers of the
folding arithmetic encoder are accumulated to the register bank as
shown in Fig. 7(b). The 3 PSAEs will read their own variables
from the register bank. In the encoding process the number of the
significant bit-plane is changed all the time. The variables of the
PSAE for the last two bit-planes of each code-block are stored
separately to allow all the PSAEs to access their own variables
from the register bank independently.

3.2. Code-Block Based DWT Encoder

To completely eliminate the code-block memory, the DWT used in
this work, code-block based DWT encoder, operates in code-block
scheme, and the data in between code-blocks is connected by a
line buffer. The output of the scan pattern of the code-block based
DWT is the same as that of the CS-AEBC and the scanning order
diagram is shown in Fig. 8(a). It needs 8 pixels sequentially from
each column. This scan-order makes the output scanning order of
the code-block based DWT to be the same as that of the CS-AEBC
and this mechanism can eliminate the code-block memory in
between the DWT and CS-AEBC. We allocate the first row of
each tile of the external memory as the horizontal line buffer to
align the reading sequence of the DWT and thus reduce the DWT
latency. The block diagram of the whole stripe 2D-DWT is shown
in Fig. 8(b). The horizontal DWT circuits are similar to the vertical
DWT circuits. However, the horizontal DWT must concurrently

139

process 4 rows of high band and low band DWT coefficients, and
therefore the horizontal DWT needs 8 sets of registers.
3.3. Dynamic RDO
The architecture of the EBCOT with conventional RDO is shown
in Fig. 9(a). Although the code-block based DWT and CS-AEBC
are in word-level operation and thus do not need any code block
memory, the bit-rate and distortion information needed by RDO
must be finished after the operation of all the bit-planes. Therefore,
it needs a memory block to store all the compressed data before
RDO. When JPEG2000 processes lossy compression, some data
are truncated by RDO. The truncated data are still processed by
EBC and it reduces efficiencies of computation and power
consumption. In order to overcome the drawbacks, the truncation
computation of RDO can be revised as eq. (3), where K represents
the number of the significant bit-plane; k represents the number of
the current bit-plane and p stands for the protection ratio:

ˆ 2ˆ
ˆ

K k
coded uncoded coded

codedcoded uncoded

D D D D
R R RR R p

 (3)

is From eq. (3), we can estimate the approximate truncation
point before the CS-AEBC finishing the code-block encoding.
After the truncation point is found, the CS-AEBC can stop
operating to start the operation of RDO and it can prevent the CS-
AEBC to process the invalid data. Therefore the EBCOT
architecture can be revised and is shown in Fig. 9(b). In Fig. 9(b),
the compressed data memory block is removed, and it can reduce
the hardware cost significantly.

4. EXPERIMENTAL RESULTS AND COMPARISONS

The prototype chip is synthesized by SYNOPSYS with Artison
TSMC 0.18 m standard cell library. Table 2 shows the gate counts,
internal memory, and the bandwidth for the external memory of
each function block of the proposed JPEG2000 encoder
architecture.

Table 3 shows the comparisons of the proposed architecture
and other competitive architectures. This proposed JPEG2000
encoder needs 2.2KB of internal memory, and the external
memory bandwidth is 16.92 bits (2.1B) per clock cycle. Besides,
the proposed architecture can handle any tile size of picture and
any levels of DWT. Compared with other existed approaches, our
JPEG2000 encoder is very competitive in area, memory
arrangement, and performance.

5. CONCLUSION

In this paper a low cost JPEG2000 encoder architecture is
proposed. We use three new approaches to design this JPEG2000
encoder, code-block based DWT, CS-AEBC, and dynamic RDO.
The output sequence order of the code-block based DWT and the
scanning order of the CS-AEBC are perfectly matched to
completely eliminate the code-block memory. The code-block
based DWT can process any size of tile and any levels of DWT.
The CS-AEBC can skip all the insignificant bit-planes without
code-block memory to increase the operation efficiency. When

processing the lossy compression, the dynamic RDO can predict
the truncated point and reduce the operation time of the CS-AEBC
and further reduce the external memory access times of CS-AEBC.
The proposed JPEG2000 encoder only needs 2KB internal
memory for buffering, and the external memory bandwidth is
2.1B/cycle.

TABLE 2. Proposed Encoder Specification
Area Mem. Bandwidth Freq.

(nand2) (KB) (B/cyc) (MHz)
CB-DWT 13223 0.28 2.11 74

CF 18480 0.19 -- 56
 Figure 9. (a) EBCOT with bit-level RDO (b) EBCOT

with word-level RDO
FAE 38065 1.75 -- 112

DRDO 20306 0 -- 56
Total 90074 2.22 2.11 --

TABLE 3. Comparison with other architectures
Area Rate Tile Mem. DWT

(Nand2) (MS/s) (Pixel) (KB) Level
2562 [5] 243792 124M 15 3

6. REFERENCES

[1] JPEG 2000 Part I: Final Draft International Standard

(ISO/IECFDIS15444-1), ISO/IEC JTC1/SC29/WG1 N1855, Aug.
2000.

[2] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp.
1158-1170, July 2000.

[3] J.-S. Chiang, Y-S. Lin, and C.-Y Hsieh, “Efficient pass-parallel for
EBCOT in JPEG 2000,” in Proc. IEEE Int. Symp. Circuits. Syst., vol.
1, Scottsdale, Arizona, May 2002, pp. 773-776.

[4] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, and L.-G. Chen,
“Parallel EBCOT architecture for JPEG 2000,” IEEE Trans. Circuits
Syst. Video Technol., no. 9, pp. 1086-1097, Sep. 2005.

[5] H-C Fang, Y-W Chang, C-C Cheng, and L-G Chen, “Memory
Efficient JPEG 2000 Architecture With Stripe Pipeline Scheduling,”
IEEE Trans Signal Processing, vol. 54, no. 12, pp. 4807-4816, Dec.
2006.

[6] Yijun Li and Magdy Bayoumi, “A Three-Level Parallel High-Speed
Low-Power Architecture for EBCOT of JPEG 2000,” IEEE Trans.
Circhits Syst. Video Technol., no. 9, pp. 1153-1163, Sep 2006.

[7] C-C Chen, Y-W Chang, H-C Fang, and L-G Chen, “Analysis of
scalable architecture for the embedded block coding in JPEG 2000,”
in Proc. IEEE Int. Symposium on Circuits and Syst., ISCAS 2006, pp.
2609-2612, May 2006.

[8] H. Yamauchi, S. Okada, K. Taketa, T. Ohyama, Y. Matsuda, T.
Mori,S. Okada, T. Watanabe, Y. Matsuo, Y. Yamada, T. Ichikawa,
and Y.Matsushita, “Image processor capable of block-noise-free
JPEG2000 compression with 30 frames/s for digital camera
applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, San Francisco, CA, Feb. 2003, pp. 46–47.

[9] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-T. Huang, and L.-G. Chen,
“High performance jpeg 2000 encoder with rate distortion
optimization,” IEEE Trans. on Multimedia, vol. 8, no. 4, pp. 645-652,
Aug 2006

[10] L. Liu, N. Chen, H. Meng, L. Zhang, Z. Wang, and H. Chen, “A VLSI
architecture of JPEG2000 encoder,” IEEE J. Solid-State Circuits,
vol.39, pp. 2032–2040, Nov. 2004.

[11] I. Daubechies, and W. Sweldens, “Factoring wavelet transforms into
lifting scheme, ” The Journal of Fourier Analysis and Applications,
Vol. 4, No.3, 1998, pp. 247-269.

[8] N/A 21 M 2x5122 N/A 2
1282 [9] 166479 81 M 48.9 2
5122 [10] 184320 66 M 68.8 5

(128n) 2 Ours 90074 56 M 2.2 any

140

